亚洲爆乳成AV人在线视菜奈实_欧美一进一出抽搐大尺度视频 _日本十八禁免费看污网站_国产一区二区怡红院_6080YY新视觉影院_蜜臀AV无码人妻精品_成人影院YY111111在线_成人欧美一区二区三区1314_少妇饥渴偷公乱A级无码

中國自動化學(xué)會專家咨詢工作委員會指定宣傳媒體
新聞詳情

米爾RK3576邊緣計(jì)算盒精準(zhǔn)驅(qū)動菜品識別模型性能強(qiáng)悍

http://www.debgrams.com 2025-10-30 15:52 來源:米爾電子

在人工智能與邊緣計(jì)算深度融合的今天,將AI模型高效部署于終端設(shè)備已成為產(chǎn)業(yè)智能化的關(guān)鍵。本文將分享基于米爾MYD-LR3576邊緣計(jì)算盒子部署菜品識別安卓Demo的實(shí)戰(zhàn)經(jīng)驗(yàn)。該設(shè)備憑借其內(nèi)置的強(qiáng)勁瑞芯微RK3576芯片,為視覺識別模型提供了充沛的本地AI算力,成功將“智慧識菜”的能力濃縮于方寸之間,充分證明了其作為邊緣AI應(yīng)用堅(jiān)實(shí)載體的卓越性能與可靠性。

實(shí)機(jī)演示效果

本地部署,實(shí)時推理。在這段實(shí)機(jī)視頻中,MYD-LR3576正同步運(yùn)行YOLOv11s(目標(biāo)檢測)與PPLCNetV2(特征提取)模型。其性能核心在于:兩個模型的NPU推理時間均被壓縮至驚人的20ms/幀,為高性能邊緣AI應(yīng)用提供了堅(jiān)實(shí)底座。

本文以米爾電子的MYD-LR3576邊緣計(jì)算盒子為例,講解如何在Android平臺部署yolo11s、PPLCNETV2模型實(shí)現(xiàn)實(shí)時菜品識別。為開發(fā)者與研究者提供一份兼具實(shí)踐參考與技術(shù)洞察的模型端到端的部署指南。

MYD-LR3576邊緣計(jì)算盒(搭載米爾基于RK3576核心板)

1. 基本介紹

1.1 邊緣計(jì)算盒

米爾MYD-LR3576-B邊緣計(jì)算盒是一款基于瑞芯微RK3576處理器設(shè)計(jì)的高性能嵌入式AI設(shè)備。 該處理器集成八核CPU架構(gòu)(4×Cortex-A72 + 4×Cortex-A53)與算力達(dá)6 TOPS的NPU(2核心),具備強(qiáng)大的邊緣端AI推理能力。

產(chǎn)品標(biāo)配8GB LPDDR4X內(nèi)存與64GB eMMC存儲,支持雙千兆網(wǎng)口、WiFi 6、多路USB 3.0及4K顯示輸出,提供完整的Debian/Linux軟件開發(fā)環(huán)境。

憑借其高性能NPU與豐富接口,該設(shè)備可高效支撐計(jì)算機(jī)視覺、智能分析等邊緣AI場景,為菜品識別、工業(yè)質(zhì)檢等應(yīng)用提供穩(wěn)定可靠的硬件平臺。

1.2 RKNN-Toolkit2 SDK

要將YOLOv11s、PPLCNetV2等主流AI模型高效地部署在MYD-LR3576-B這樣的邊緣設(shè)備上,并充分發(fā)揮其NPU的算力,離不開一個關(guān)鍵的軟件工具鏈——RKNN-Toolkit2。這是由瑞芯微官方提供的核心SDK,專為其RK系列芯片的NPU(神經(jīng)網(wǎng)絡(luò)處理單元)設(shè)計(jì)。

GitHub倉庫: https://github.com/airockchip/rknn-toolkit2

1.2.1 RKNN-Toolkit2 是什么?

RKNN-Toolkit2是一個功能完整的模型轉(zhuǎn)換、推理和性能評估工具包。它的核心作用在于充當(dāng)一個“翻譯官”和“優(yōu)化器”,將開發(fā)者們在主流深度學(xué)習(xí)框架(如PyTorch, TensorFlow, ONNX等)上訓(xùn)練好的模型,轉(zhuǎn)換成可以在瑞芯微NPU上高效運(yùn)行的專用格式——RKNN模型。

1.2.2 核心功能與工作流程

該工具鏈為AI模型在邊緣端的部署提供了全流程支持:

1. 模型轉(zhuǎn)換

  • 支持多框架輸入: 可直接加載PyTorch(.pt)、TensorFlow(.pb)、ONNX(.onnx)等格式的模型。
  • 量化優(yōu)化: 支持將FP32模型量化為INT8或INT16精度,在保證精度的同時,大幅減小模型體積、提升推理速度、降低功耗。這正是實(shí)現(xiàn)20ms超快推理的關(guān)鍵步驟之一。
  • 模型優(yōu)化: 工具會自動對模型圖結(jié)構(gòu)進(jìn)行編譯和優(yōu)化,使其適配RKNPU的硬件架構(gòu),提取最大性能。

2. 仿真推理與精度分析

  • 在模型部署到物理設(shè)備(如MYD-LR3576-B)之前,可以在PC上進(jìn)行仿真推理,驗(yàn)證模型轉(zhuǎn)換后的正確性和精度,極大方便了前期的調(diào)試工作。

3. 性能評估

  • 提供模型性能分析工具,可以評估模型在NPU上的理論推理時間和內(nèi)存占用,幫助開發(fā)者進(jìn)行模型選型和優(yōu)化。

4. 跨平臺部署支持

  • 除了Python環(huán)境下的開發(fā)工具,RKNN-Toolkit2還提供了C/C++版本的運(yùn)行時庫(RKNN API)。這使得開發(fā)者可以輕松地將優(yōu)化后的RKNN模型集成到最終的生產(chǎn)環(huán)境中,無論是Linux、Android還是Debian系統(tǒng)(正如MYD-LR3576-B所搭載的),都能實(shí)現(xiàn)高效、低延遲的推理。

1.2.3 與MYD-LR3576的完美協(xié)同

在本文的菜品識別Demo中,正是利用了RKNN-Toolkit2的強(qiáng)大能力:

  • 步驟一: 在PC端將預(yù)訓(xùn)練好的YOLOv11s(目標(biāo)檢測)和PPLCNetV2(圖像分類)模型通過該工具鏈轉(zhuǎn)換為.rknn格式文件。
  • 步驟二: 將轉(zhuǎn)換好的RKNN模型文件與調(diào)用RKNN Runtime的應(yīng)用程序一同部署到MYD-LR3576邊緣計(jì)算盒上。
  • 步驟三: 應(yīng)用程序通過RKNN Runtime API加載模型,調(diào)用NPU執(zhí)行計(jì)算,最終實(shí)現(xiàn)了雙模型協(xié)同、單次推理均僅20ms的卓越性能。

總結(jié)而言,RKNN-Toolkit2是釋放MYD-LR3576-B內(nèi)部6 TOPS NPU潛力的鑰匙。 它大大降低了開發(fā)者將AI模型部署到瑞芯微邊緣計(jì)算平臺的技術(shù)門檻和開發(fā)周期,使得構(gòu)建像實(shí)時菜品識別這樣的高性能AI應(yīng)用變得簡單而高效。

1.3 RKNN Model Zoo

RKNN Model Zoo 是一個專為瑞芯微NPU打造的 “模型商店” 或 “開箱即用模型庫” 。該項(xiàng)目收集了大量經(jīng)典的、高性能的深度學(xué)習(xí)模型,并已經(jīng)過預(yù)轉(zhuǎn)換和調(diào)優(yōu),直接提供了現(xiàn)成的 RKNN格式模型文件,同時附帶了完整的示例代碼。

Github地址:https://github.com/airockchip/rknn_model_zoo

RKNN Model Zoo優(yōu)點(diǎn):

  • 開箱即用的體驗(yàn): 開發(fā)者無需從頭開始進(jìn)行模型訓(xùn)練和復(fù)雜的轉(zhuǎn)換調(diào)試,可以直接下載所需的RKNN模型文件,利用提供的示例代碼在MYD-LR3576等設(shè)備上快速運(yùn)行起來,立即看到效果,極大地縮短了概念驗(yàn)證(PoC)的周期。
  • 官方性能保證: 倉庫中的模型都提供了詳細(xì)的性能基準(zhǔn)數(shù)據(jù),包括在特定RK芯片上的推理速度和精度。這為開發(fā)者選型提供了權(quán)威參考,確保模型在目標(biāo)設(shè)備上能夠達(dá)到預(yù)期的性能。
  • 最佳實(shí)踐范例: 每個模型都附帶完整的C++和Python示例代碼,清晰地展示了如何加載RKNN模型、進(jìn)行數(shù)據(jù)預(yù)處理、執(zhí)行推理以及解析輸出結(jié)果。這對于學(xué)習(xí)如何在自己的應(yīng)用程序中集成和調(diào)用RKNN模型而言,是極具價值的學(xué)習(xí)資料。

2. 搭建環(huán)境

2.1 刷入Android系統(tǒng)

米爾的MYD-LR3576邊緣盒子默認(rèn)是Linux系統(tǒng),在我們的場景中,需要先刷機(jī)為Android系統(tǒng)。

2.1.1 獲取資料

登錄米爾開發(fā)者中心(https://dev.myir.cn/auth/login.html),在開發(fā)者平臺注冊綁定產(chǎn)品信息,在包裝盒側(cè)面會有一個產(chǎn)品型號系列號,可通過微信掃碼綁定。 綁定成功后,依次點(diǎn)擊我的產(chǎn)品->軟件資料->Android14操作系統(tǒng):

然后復(fù)制提取碼后點(diǎn)擊“阿里云盤”字樣即可打開米爾提供的所有相關(guān)資料文件。如:

01-Docs(ZH)/MYD-LR3576-GK Android 軟件開發(fā)指南-V1.0.pdf
02-Images/myir-image-lr3576-android14.zip
03-Tools

是我們需要的文件,分別是軟件開發(fā)指南、安卓系統(tǒng)鏡像文件以及工具,下載上述文件。

2.1.2 鏡像燒錄

在軟件開發(fā)指南中的第四章有詳細(xì)的鏡像編譯步驟,開發(fā)者可以根據(jù)情況自行編譯鏡像,方便進(jìn)行自定義。本文直接使用了資料中已經(jīng)編譯好的Android鏡像進(jìn)行燒錄。

1. 安裝驅(qū)動

驅(qū)動安裝工具壓縮包位于 03-Tools/DriverAssitant 目錄下,解壓運(yùn)行 DriverAssitant工具,出現(xiàn)以下界面,首先點(diǎn)擊卸載驅(qū)動,然后點(diǎn)擊驅(qū)動安裝:

2. 燒錄鏡像到EMMC

RKDevTool是瑞芯微提供的適用于 RK 系列芯片的 windows 下的便捷開發(fā)工具,為開發(fā)人員提供了固件燒錄/鏡像燒錄|設(shè)備擦除|設(shè)備切換/固件解包等功能。

  1. 首先登陸邊緣盒子,使用Type-C線將邊緣盒子的DEBUG(電源接口旁寫著Type-C字樣)口連接到windows電腦;然后打開設(shè)備管理器,配置COM口參數(shù):
  • 波特率:115200
  • 數(shù)據(jù)位:8
  • 停止位:1
  • 校驗(yàn)位:無
  • 流控:無
  • 打開串口終端軟件填入上述參數(shù),然后給盒子上電,即可進(jìn)入系統(tǒng);
  1. 進(jìn)入系統(tǒng)后在終端輸入reboot loader即可進(jìn)入loader模式;
  2. 打開工具文件夾下的RKDevTool(沒有解壓請解壓),雙擊RKDevTool.exe,會看到提示:發(fā)現(xiàn)一個LOADER設(shè)備;
  3. 此時點(diǎn)擊升級固件->固件,選擇剛剛下載的Android鏡像文件(剛下載的為zip文件,解壓出里面的鏡像文件),然后點(diǎn)擊升級按鈕并等待完成:

  1. 此時已經(jīng)完成Android系統(tǒng)的燒錄。

2.2 準(zhǔn)備RKNN-Toolkit2環(huán)境

注意:這里的操作是在另外一臺電腦上操作,并且已經(jīng)配置了python環(huán)境或Conda環(huán)境。為模型轉(zhuǎn)換、量化以及測試提供基礎(chǔ)環(huán)境。

1. 可以直接通過網(wǎng)絡(luò)安裝:

pip install rknn-toolkit2 -i https://pypi.org/simple
# 如果已安裝 RKNN-Toolkit2,可通過以下命令升級 RKNN-Toolkit2
pip install rknn-toolkit2 -i https://pypi.org/simple --upgrade

2. 通過本地 wheel 包安裝

首先克隆RKNN-Toolkit2項(xiàng)目文件:

git clone https://github.com/airockchip/rknn-toolkit2.git -d 1

或者手動下載下面涉及到的文件。

然后進(jìn)入項(xiàng)目根目錄后:

# 請根據(jù)不同的 python 版本及處理器架構(gòu),選擇不同的 requirements 文件:
# 其中 cpxx 是 python 版本號
pip install -r packages/arm64/arm64_requirements_cpxx.txt

# 安裝 RKNN-Toolkit2
# 請根據(jù)不同的 python 版本及處理器架構(gòu),選擇不同的 wheel 安裝包文件:
# 其中 x.x.x 是 RKNN-Toolkit2 版本號,cpxx 是 python 版本號
pip install packages/arm64/rknn_toolkit2-2.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl

3. 模型轉(zhuǎn)換

rknn_model_zoo中包含了很多官方已經(jīng)適配的模型,包括模型訓(xùn)練以及模型轉(zhuǎn)換腳本。

3.1 yolo11模型轉(zhuǎn)換

rknn_model_zoo中已經(jīng)包含了yolo全系列模型,因此yolo11模型的轉(zhuǎn)換非常簡單,我們直接將訓(xùn)練好的模型(通常是.pt格式)先轉(zhuǎn)為onnx格式。該轉(zhuǎn)換過程通常建議在與訓(xùn)練模型相同的環(huán)境中進(jìn)行,如何進(jìn)行yolo11的模型訓(xùn)練不是本文重點(diǎn),可參考: https://github.com/airockchip/ultralytics_yolo11 進(jìn)行訓(xùn)練。 轉(zhuǎn)換命令:

# 調(diào)整 ./ultralytics/cfg/default.yaml 中 model 文件路徑,默認(rèn)為 yolo11n.pt
# 在 ultralytics_yolo11 的項(xiàng)目根目錄執(zhí)行
export PYTHONPATH=./
python ./ultralytics/engine/exporter.py

執(zhí)行完畢后,會生成 ONNX 模型。假如原始模型為 yolo11s.pt,則生成 yolo11s.onnx 模型。 然后進(jìn)入rknn_model_zoo項(xiàng)目根目錄,再依次進(jìn)入examples/yolo11/python路徑下,有一個python轉(zhuǎn)換腳本:convert.py,可通過python convert.py 查看腳本幫助文檔:

python convert.py
Usage: python3 convert.py onnx_model_path [platform] [dtype(optional)] [output_rknn_path(optional)]
       platform choose from [rk3562, rk3566, rk3568, rk3576, rk3588, rv1126b, rv1109, rv1126, rk1808]
       dtype choose from [i8, fp] for [rk3562, rk3566, rk3568, rk3576, rk3588, rv1126b]
       dtype choose from [u8, fp] for [rv1109, rv1126, rk1808]

根據(jù)文檔可知,腳本的第一個參數(shù)是要被轉(zhuǎn)換的onnx模型路徑,第二個參數(shù)是平臺,即SOC型號,第三個參數(shù)是量化相關(guān),我們的平臺是rk3576,如果量化則選i8,不量化則選fp。我們這里選擇量化:

選擇量化需要準(zhǔn)備校準(zhǔn)數(shù)據(jù),讀取的數(shù)據(jù)路徑在腳本中已經(jīng)固定為../../../datasets/COCO/coco_subset_20.txt,這里需要修改為我們自己的數(shù)據(jù),數(shù)量建議至少20張。

python convert.py onnx模型路徑/yolo11s.onnx rk3576 i8

轉(zhuǎn)換成功后可看到:

腳本默認(rèn)將轉(zhuǎn)換后的模型存儲在../model中。

3.2 PPLCNETV2模型轉(zhuǎn)換

PPLCNETV2網(wǎng)絡(luò)是Paddle提供的,因此需要使用paddle2onnx工具,先將paddle格式轉(zhuǎn)為onnx格式:

paddle2onnx \
  --model_dir models/ \
  --model_filename inference.pdmodel \
  --params_filename inference.pdiparams \
  --save_file paddle_feature_one_batch.onnx \
  --opset_version 11 \
  -isd "{'x':[ 1, 3, 320, 320 ]}"

由于RKNN官方?jīng)]有PPLCNET模型的Demo,因此我們需要自己根據(jù)模型轉(zhuǎn)換的API文檔編寫rknn模型的轉(zhuǎn)換腳本,可復(fù)制一份Yolo11的轉(zhuǎn)換腳本進(jìn)行修改,重點(diǎn)修改模型的輸入輸出形狀、歸一化參數(shù)等。然后參考yolo11的轉(zhuǎn)換命令進(jìn)行轉(zhuǎn)換。

4. 菜品識別案例

本章將詳細(xì)介紹基于米爾MYD-LR3576邊緣計(jì)算盒開發(fā)的菜品識別安卓Demo應(yīng)用。該案例完整展示了從特征庫構(gòu)建到實(shí)時識別的全流程,充分體現(xiàn)了設(shè)備在端側(cè)AI應(yīng)用中的實(shí)用性與高性能。

4.1 特征注冊

特征注冊是構(gòu)建可擴(kuò)展菜品識別系統(tǒng)的關(guān)鍵第一步,其目的是為系統(tǒng)創(chuàng)建一個本地的、可定制的菜品特征庫。

  • 操作流程: 用戶在Demo界面點(diǎn)擊“特征注冊”按鈕后選擇一個事先準(zhǔn)備好的文件夾。該文件夾內(nèi)部包含多個子文件夾,每個子文件夾代表一道唯一的菜品,并以菜品名稱命名(例如:“紅燒肉”、“清蒸鱸魚”)。子文件夾內(nèi)則包含該菜品從不同角度、在不同光照條件下拍攝的若干張圖片。
  • 技術(shù)實(shí)現(xiàn): Demo應(yīng)用會遍歷整個文件夾結(jié)構(gòu)。對于每一張圖片,系統(tǒng)會調(diào)用內(nèi)置的PPLCNetV2特征提取模型進(jìn)行特征提取。該模型會將輸入的菜品圖片轉(zhuǎn)換成一個高維、緊湊的特征向量(也就是老生常談的特征嵌入)。最后,系統(tǒng)將每道菜所有圖片的特征向量與其名稱關(guān)聯(lián)起來,使用向量數(shù)據(jù)庫存儲于設(shè)備本地,形成一個結(jié)構(gòu)化且高效查詢的特征數(shù)據(jù)庫。

該設(shè)計(jì)的優(yōu)勢在于:用戶無需重新訓(xùn)練龐大的深度學(xué)習(xí)模型,僅需提供數(shù)十張示例圖片,即可快速、靈活地?cái)U(kuò)充或修改系統(tǒng)所能識別的菜品庫,極大地提升了應(yīng)用的實(shí)用性和適應(yīng)性。

4.2 菜品識別

Demo提供了三種識別模式,以適應(yīng)不同場景下的需求:

4.2.1 拍照識別

用戶可以直接調(diào)用設(shè)備攝像頭,現(xiàn)場對菜品進(jìn)行拍照。拍完后,系統(tǒng)立即對照片進(jìn)行識別,并繪制識別結(jié)果。

4.2.2 本地圖片識別

用戶可以從手機(jī)相冊中選擇已有的菜品圖片進(jìn)行識別。

4.2.3 實(shí)時視頻流識別

Demo啟動設(shè)備攝像頭并開啟實(shí)時預(yù)覽,視頻流中的每一幀都會被送入識別流水線。系統(tǒng)能夠連續(xù)、不間斷地進(jìn)行識別,并將結(jié)果實(shí)時覆蓋顯示在視頻畫面上,提供流暢的“所見即所識”體驗(yàn)。

4.3 識別流水線與性能表現(xiàn)

無論采用哪種識別模式,其核心的識別流水線是相同的,并且都得益于MYD-LR3576強(qiáng)大的NPU算力:

1. 目標(biāo)檢測: 當(dāng)一張圖片或視頻幀輸入后,首先由 YOLOv11s模型進(jìn)行推理。它的任務(wù)是精準(zhǔn)定位圖片中菜品所在的位置,并輸出其邊界框,為后續(xù)處理劃定了關(guān)鍵區(qū)域。

2. 特征提取: 系統(tǒng)將YOLOv11s檢測出的菜品區(qū)域裁剪出來,并送入 PPLCNetV2特征提取模型中,生成該區(qū)域的特征向量。

3. 特征比對: 最后,系統(tǒng)將這個新生成的特征向量與特征注冊階段建立的數(shù)據(jù)庫中的所有已知特征向量進(jìn)行相似度計(jì)算(通常使用余弦相似度)。找出相似度最高的已知菜品,并將其名稱作為識別結(jié)果輸出。

性能亮點(diǎn): 在MYD-LR3576上,經(jīng)過RKNN-Toolkit2優(yōu)化后,YOLOv11s和PPLCNetV2這兩個模型在NPU上的單次推理時間均穩(wěn)定在20ms左右,這確保了即使在最耗費(fèi)資源的實(shí)時視頻流模式下,系統(tǒng)也能保持較流暢的識別幀率。

4.4 準(zhǔn)確率評估功能

為了量化識別系統(tǒng)的可靠性,Demo還內(nèi)置了準(zhǔn)確率評估功能。用戶可以選擇一個包含已標(biāo)注圖片的測試集,系統(tǒng)會自動運(yùn)行批量識別,并將識別結(jié)果與真實(shí)標(biāo)簽進(jìn)行比對,最終生成一份包含準(zhǔn)確率等關(guān)鍵指標(biāo)的評估報(bào)告,為模型優(yōu)化和特征庫完善提供了數(shù)據(jù)依據(jù)。

4.5 案例總結(jié)

該菜品識別Demo僅實(shí)現(xiàn)了基礎(chǔ)功能,且沒有做針對性優(yōu)化,如所有操作都是同步進(jìn)行,即攝像頭數(shù)據(jù)獲取或讀取本地圖像->格式轉(zhuǎn)換->色彩空間轉(zhuǎn)換->預(yù)處理->模型推理->結(jié)果后處理這一整套流程都是同步進(jìn)行,且模型推理時僅使用了一個NPU核心(共兩個),如果使用NPU進(jìn)行圖像處理并配合圖像隊(duì)列異步處理以及充分利用NPU核心,其性能可以達(dá)到15-20幀。即便Demo沒有針對優(yōu)化,RK3576的性能同樣足夠支撐端側(cè)復(fù)雜AI流水線的能力。從高效的特征注冊到實(shí)時的多模型推理,其強(qiáng)勁的NPU算力是實(shí)現(xiàn)所有功能流暢運(yùn)行的基石,為智慧餐飲等領(lǐng)域提供了可靠的硬件解決方案。

MYD-LR3576-B邊緣計(jì)算盒:

產(chǎn)品鏈接:https://www.myir.cn/shows/138/24.html

天貓鏈接:https://detail.tmall.com/item.htm?id=886580845138

版權(quán)所有 工控網(wǎng) Copyright?2025 Gkong.com, All Rights Reserved
无码国产69精品久久久久网站| 好爽好湿好硬好大免费视频| 国产午夜成人无码免费看| 国内精品久久人妻无码网站| 精品乱码一区二区三区四区| 久久婷婷国产综合精品| 男生把自己的手放到女生的QQ里| 欧美亚洲国产精品久久蜜芽直播| 日本入室强伦姧BD在线观看| 熟女系列丰满熟妇AV| 新JAPANESEVIDEO乱| 亚洲欧美妆和亚洲妆的区别 | 久久人人爽天天玩人人妻精品| 免费人妻精品一区二区三区| 強暴強姦AV正片一区二区三区| 三级韩国2017在线观看| 无遮挡又色又刺激的视频黄| 亚洲国产精品久久久久婷婷软件| 影音先锋中文字幕人妻| BGMBGMBGM老头野外| 大菠萝APP福引导前往| 国产精品无码翘臀在线观看| 精品 亚洲 无码 自拍 另类| 久久综合色天天久久综合图片 | 久久久久国产亚洲AⅤ麻豆| 免费A级毛片在线看| 人妻被按摩师玩弄到潮喷| 少妇人妻无码专区毛片| 亚洲AV无码AV日韩AV网站| 阳茎伸入女人的阳道免费视频| 91精品人妻一区二区三区蜜蜜挑| 成人免费777777被爆出| 国产乱码一二三区精品| 久久成人成狠狠爱综合网| 免费一区二区三区成人免费视频| 日本japanese人妻护士| 无码毛片视频一区二区三区| 亚洲码国产精品高潮在线| 综合精品欧美日韩国产在线| 成人免费毛片内射美女-百度| 国产目拍亚洲精品一区| 久久精品人人槡人妻人人玩AV | 波多野结衣一二三区AV高清| 国产精品国产三级国产AN| 精品无码一区二区三区水蜜桃| 男生把自己的手到女生的QQ里 | 亚洲人成影院在线无码按摩店| 97电影九七电影理论片| 粉嫩被黑人两根粗大猛烈进出视频| 国产日韩AⅤ精品一区二区| 久久久亚洲熟妇熟女| 欧洲无码精品A码无人区| 无码成人亚洲AV污污污在线看| 亚洲精品二区国产综合野狼 | 欧美在线三级艳情网站| 玩弄老太太的BBB| 亚洲色大成网站WWW永久一区| 99精品久久精品一区二区| 贵为皇后却被用来犒赏三军| 火柴人战争遗产破解版| 男男喷液抽搐高潮呻吟AV| 色综合视频一区二区三区| 亚洲妇女行蜜桃AV网网站| 最新无码人妻在线不卡| 丰满人妻被公侵犯日本| 精品成人乱色一区二区| 欧美XXXX做受欧美| 天天澡天天揉揉AV无码| 亚洲色大情网站WWW| SEERX性欧美| 国产强被迫伦姧在线观看无码| 久久无码中文字幕免费影院蜜桃 | 亚洲欧美日韩国产精品一区 | 精品人妻一区二区三区三区换着玩| 女人被爽到呻吟GIF动态图 | 日韩精品无码一区二区三区视频| 亚洲AV成人在线| 中文字幕亚洲欧美专区| 公天天吃我奶躁我的在线观看| 精品乱人伦一区二区三区| 欧美性猛烈XXXX极品少妇| 无码专区6080YY免费视频| 樱花YY私人在线影院| 粗大猛烈进出高潮视频| 精品人妻一区二区三区免费| 琴乳液狂飙却被空吸入口中| 性做久久久久久久久| 综合成人亚洲偷自拍色| 国产高清自产拍AV在线| 久久婷婷五月综合色99啪AK| 色噜噜噜亚洲男人的天堂| 亚洲人成网站18禁止影院| 啊灬啊别停灬用力啊老师| 国产亚洲一区二区手机在线观看 | 免费A级毛片无码A∨性按摩| 试看20分钟做受| 亚洲尤码不卡AV麻豆| 成 人 H动 漫在线播放日本| 黄网站色视频免费观看| 欧美熟妇SEXFREE| 羞羞汗汗YY歪歪漫画AV漫画| 69堂人成无码免费视频果冻传媒| 国产高清在线a视频大全| 浪潮AV激情高潮国产蜜臀| 熟妇毛耸耸浓密茂盛| 野花香视频免费观看| 炖肉计(是今)海棠| 久久久久久精品免费无码无| 色噜噜狠狠色综合AV妖精| 亚洲人妻AAA网站| 成人无码AV网站在线观看| 精品无码视频一区二区三区| 日产无人区一线二线三线最新版| 亚洲精品综合欧美一区二区三区| 薄白丝小仙女自慰喷水| 精品第一国产综合精品AⅤ| 人妻JapanXXXX精品HD| 亚洲精品国产AV现线| 波多野结衣中文字幕一区二区三区| 精精国产XXXX视频在线播放| 日本精品视频一区二区| 亚洲人成电影一区二区在线| 村长压在小雪身上耕耘视频| 久久精品网站免费观看| 上面一个摸下面一个手念什么| 夜夜躁日日躁狠狠久久AV| 国产AV一区二区二三区妇| 麻豆精品一卡2卡三卡4卡免费观| 无码A∨高潮抽搐流白浆8MAV | 日产亚洲一卡2卡3卡4卡网站| 亚洲欧美偷国产日韩| 大杳蕉在线影院在线播放| 久久久亚洲裙底偷窥综合| 天堂中文А√在线官网| 中文字幕精品无码一区二区三区| 国产男男GayGay裸交视频| 欧美日韩亚洲中文字幕一区二区三 | 日本久久99成人网站| 亚洲熟妇人av一区二区三区| 粉嫩av一区二区网站入口| 麻豆av无码人妻一区二区三区| 无套内射AV二区| FREEHDⅩXXXXSEX| 娇小BBW搡BBBB搡BBBB| 日韩精品人妻中文字幕有码| 野花日本免费完整版高清版8| 国产成人久久久精品二区三区| 免费无遮挡很爽很污很黄的网站| 亚洲AV日韩AⅤ无码| 暗夜免费观看在线完整版| 久久久精品人妻一区亚美研究所| 丝瓜成视频人APP下载网站| 2021最新久久久视精品爱| 国产在线乱子伦一区二区| 日本高清WWW色视频| 一本大道色卡1卡2卡3| 国产精品免费久久久久久蜜桃| 欧美久久高潮久久高潮| 亚洲人成电影网站色MP4| 国产成人AV一区二区三区无码 | 成人爽A毛片免费网站| 老师粉嫩小泬喷水视频90| 小荡货奶真大水真多紧视频| 白嫩光屁股BBBBBBBBB| 久久久久亚洲精品中文字幕| 无码人妻精品一区二区| PYTHON人马大战CSDN| 久久久久国产精品嫩草影院 | 精品国色天香一卡2卡3卡 | 少妇爆乳无码专区网站| 50妺妺窝人体色www合集| 狠狠躁夜夜躁人人爽超碰97香蕉 | 欧美性大战XXXXX久久久√| 亚洲色大18成人网站WWW在线| 国产成人三级在线视频网站观看| 欧美和日本操逼视频| 亚洲色18禁成人网站WWW永久| 国产二级一片内射视频插放| 欧美一级 片内射黑人i| 亚洲熟悉妇女XXX妇女AV| 国产精品久久成人网站| 青青草原综合久久大伊人| 一二三四在线看日本高清| 国产人无码A在线西瓜影音| 日韩精品无码专区免费播放| 最新精品国偷自产在线婷婷| 精产国品一二三产区M553| 天美传媒MV免费观看软件特色| H罩杯大胸爆乳交在线观看| 久久久久亚洲精品无码网址蜜桃 | 无遮挡粉嫩小泬女视频| 不惑女人的扭曲生活| 美女啪啪网站又黄又免费| 亚洲国产AV高清无码| 国产后入又长又硬| 人妻少妇偷人精品视频| 中文字幕色偷偷人妻久久| 精品熟女少妇AV免费久久| 五月天国产亚洲AV麻豆| 成人熟女视频一区二区三区|