亚洲爆乳成AV人在线视菜奈实_欧美一进一出抽搐大尺度视频 _日本十八禁免费看污网站_国产一区二区怡红院_6080YY新视觉影院_蜜臀AV无码人妻精品_成人影院YY111111在线_成人欧美一区二区三区1314_少妇饥渴偷公乱A级无码

中國自動化學(xué)會專家咨詢工作委員會指定宣傳媒體
新聞詳情

在低功耗MCU上實現(xiàn)人工智能和機器學(xué)習(xí)

http://www.debgrams.com 2025-02-21 09:35 來源:Silicon Labs

人工智能(AI)和機器學(xué)習(xí)(ML)技術(shù)不僅正在快速發(fā)展,還逐漸被創(chuàng)新性地應(yīng)用于低功耗的微控制器(MCU)中,從而實現(xiàn)邊緣AI/ML解決方案。這些MCU是許多嵌入式系統(tǒng)不可或缺的一部分,憑借其成本效益、高能效以及可靠的性能,現(xiàn)在能夠支持AI/ML應(yīng)用。這種集成化在可穿戴電子產(chǎn)品、智能家居設(shè)備和工業(yè)自動化等應(yīng)用領(lǐng)域中,從AI/ML功能中獲得的效益尤為顯著。具備AI優(yōu)化功能的MCU和TinyML的興起(專注于在小型、低功耗設(shè)備上運行ML模型),體現(xiàn)了這一領(lǐng)域的進步。TinyML對于直接在設(shè)備上實現(xiàn)智能決策、促進實時處理和減少延遲至關(guān)重要,特別是在連接有限或無連接的環(huán)境中。

TinyML是指在小型、低功耗設(shè)備上應(yīng)用機器學(xué)習(xí)模型,尤其是在微控制器(MCU)平臺上,這些MCU經(jīng)過優(yōu)化,可以在設(shè)備有限的資源體系內(nèi)運行。這使得邊緣設(shè)備能夠?qū)崿F(xiàn)智能決策,支持實時處理并減少延遲。量化(Quantization)和剪枝(Pruning)等技術(shù)用于減小模型大小并提高推理速度。量化通過降低模型權(quán)重的精度,顯著減少內(nèi)存使用而幾乎不影響準(zhǔn)確性;剪枝則通過去除不太重要的神經(jīng)元,進一步減小模型規(guī)模并提升延遲性能。這些方法對于在資源有限的設(shè)備上部署ML模型至關(guān)重要。

PyTorch和TensorFlow Lite都是實現(xiàn)機器學(xué)習(xí)模型的主流框架。PyTorch是一個開源機器學(xué)習(xí)庫,被廣泛用于人工智能應(yīng)用的開發(fā),包括可以部署在微控制器上的應(yīng)用程序。PyTorch提供了用于機器學(xué)習(xí)的工具和庫,包括計算機視覺和自然語言處理,可用于低功耗和小尺寸設(shè)備。

TensorFlow Lite for Microcontroller(TFLM)能夠在非常受限的MCU類設(shè)備上運行具有Flatbuffer轉(zhuǎn)換功能的TF Lite模型。這減少了模型的大小,并優(yōu)化了它在MCU上的推理。

另一個重要的工具是來自ARM的CMSIS-NN庫,它為Cortex-M處理器提供了優(yōu)化的神經(jīng)網(wǎng)絡(luò)內(nèi)核來運行TFLM模型。CMSIS-NN庫提高了性能并減少了內(nèi)存占用,使其更容易在基于ARM的MCU上運行ML模型。

此外,一些MCU還配備了專用的AI/ML硬件加速器,如Silicon Labs(芯科科技)的EFM32無線SoC和MCU,可以顯著提高ML模型的性能,使更復(fù)雜的應(yīng)用程序能夠在這些設(shè)備上更快、更高效地運行。人工智能加速器擅長并行化任務(wù),如矩陣乘法、卷積和圖形處理。通過利用多樣化的并行性,它們可以一次執(zhí)行大量的計算。這使得人工智能工作負載的速度大大提高,同時保持低功耗。這些加速器還增強了內(nèi)存訪問模式,減少了數(shù)據(jù)傳輸開銷,主CPU—CortexM可以進入低功耗睡眠模式,以節(jié)省更多的能量或管理額外的任務(wù)。通過使數(shù)據(jù)更接近計算單元,它們減少了等待時間。其結(jié)果是增強了性能、降低了功耗和延遲。

實際應(yīng)用

TinyML的實際應(yīng)用是多種多樣且有影響力的。一個值得注意的示例是音頻和視覺喚醒詞,當(dāng)說出特定的關(guān)鍵字或在圖像中檢測到某人時,設(shè)備會觸發(fā)動作。這項技術(shù)被用于智能揚聲器和安全攝像頭,支持它們在識別到喚醒詞或檢測運動時激活。另一種應(yīng)用是工業(yè)環(huán)境中的預(yù)測性維護。工廠設(shè)備上的傳感器持續(xù)監(jiān)測振動和溫度等參數(shù),可使用TinyML模型檢測來異常并在故障發(fā)生之前預(yù)測維護需求,這有助于減少停機時間和維護成本。

手勢和活動識別是TinyML的另一種令人興奮的應(yīng)用。配備加速度計和陀螺儀的可穿戴設(shè)備可以監(jiān)測身體活動,如走路、跑步或特定手勢。這些設(shè)備使用TinyML模型實時分析傳感器數(shù)據(jù),為健身追蹤或醫(yī)療診斷提供有價值的見解。在農(nóng)業(yè)領(lǐng)域,TinyML被用于環(huán)境監(jiān)測。智能農(nóng)業(yè)系統(tǒng)分析土壤濕度和天氣條件,以優(yōu)化灌溉,提高作物產(chǎn)量和資源效率。

TinyML還增強了健康監(jiān)測功能。諸如連續(xù)血糖監(jiān)測儀(CGM)這樣需要長時間電池壽命和實時數(shù)據(jù)處理的設(shè)備,都能夠極大地受益于這項技術(shù)。此外,智能床傳感器可以在沒有直接接觸的情況下評估病人的呼吸模式,為遠程觀察提供不間斷的健康數(shù)據(jù)。這一創(chuàng)新在管理老年人護理和慢性疾病方面特別有價值,因為持續(xù)監(jiān)測有助于及早發(fā)現(xiàn)潛在的健康問題。

啟動開發(fā)

要開始構(gòu)建自己的TinyML應(yīng)用,您需要了解TinyML的基礎(chǔ)知識并選擇合適的硬件。根據(jù)您的應(yīng)用,您可能需要傳感器來收集數(shù)據(jù),例如加速度計、麥克風(fēng)或攝像頭。設(shè)置開發(fā)環(huán)境包括安裝Simplicity Studio集成開發(fā)環(huán)境(IDE)、SDK和TinyML所需的資源庫。

下一步是收集和準(zhǔn)備與應(yīng)用相關(guān)的數(shù)據(jù)。例如,如果您正在構(gòu)建一個手勢識別系統(tǒng),您需要收集不同手勢的加速度計數(shù)據(jù)。收集數(shù)據(jù)后,您需要對其進行預(yù)處理,使其適合訓(xùn)練您的模型。訓(xùn)練模型需要在功能強大的機器上使用高級框架,如TensorFlow或PyTorch。一旦訓(xùn)練完畢,模型需要使用量化和剪枝等技術(shù)進行優(yōu)化。

在完成優(yōu)化后,即可將模型轉(zhuǎn)換為適合MCU的格式,如TensorFlow Lite格式。最后一步是將優(yōu)化后的模型部署到MCU,將其與應(yīng)用程序代碼集成,并對其進行全面測試,以確保其滿足性能和精度要求。基于實際性能的不斷迭代和改進對于完善TinyML應(yīng)用至關(guān)重要。

利用芯科科技的解決方案在微控制器上實現(xiàn)人工智能和機器學(xué)習(xí)

芯科科技提供了一系列解決方案,有助于在MCU上實現(xiàn)AI/ML。EFR32/EFM32(xG24、xG26、xG28)和SiWx917系列微控制器由于其低功耗和強大的性能而非常適合TinyML應(yīng)用。以下是在芯科科技MCU上實現(xiàn)AI/ML的詳細技術(shù)指南:

數(shù)據(jù)采集與預(yù)處理

數(shù)據(jù)采集:使用連接到MCU的傳感器采集原始數(shù)據(jù),例如加速度計、陀螺儀和溫度傳感器等傳感器都可用于各種應(yīng)用。

預(yù)處理:對數(shù)據(jù)進行清理和預(yù)處理,使其適合訓(xùn)練。這可能包括過濾噪聲、對數(shù)值進行歸一化處理以及將數(shù)據(jù)分割到窗口中。為此,芯科科技提供了數(shù)據(jù)采集和預(yù)處理工具。

數(shù)據(jù)采集工具則由合作伙伴SensiML提供:https://github.com/sensiml/sensiml_xG24_dual_audio_imu_capture

模型訓(xùn)練

模型選擇:根據(jù)應(yīng)用選擇合適的ML模型。常用的模型包括決策樹(decision tree)和支持向量機(vector machine)。

訓(xùn)練:在高性能云服務(wù)器或帶有GPU的本地PC上使用TensorFlow訓(xùn)練模型。這包括將預(yù)處理數(shù)據(jù)輸入模型并調(diào)整參數(shù)以最小化誤差。

模型轉(zhuǎn)換:使用TensorFlow Lite轉(zhuǎn)換器將訓(xùn)練模型轉(zhuǎn)換為與TF Lite Micro兼容的格式。TensorFlow Lite for Microcontrollers (TFLM)中的FlatBuffer轉(zhuǎn)換包括將TensorFlow Lite模型轉(zhuǎn)換為FlatBuffer格式,這是一種緊湊的二進制格式,可以高效地存儲和快速地訪問。這個過程對于在內(nèi)存和處理能力有限的微控制器上運行機器學(xué)習(xí)模型至關(guān)重要。FlatBuffers支持直接訪問模型而無需解壓。一旦采用FlatBuffer格式,該模型可以由微控制器執(zhí)行,使其能夠執(zhí)行推理任務(wù)。這種轉(zhuǎn)換減小了模型大小,使其適用于內(nèi)存非常有限的設(shè)備,并且可以快速訪問和執(zhí)行模型,而無需進行大量解析。此外,它還確保該模型可以在運行速率低于1GHz、代碼空間有限(通常低于3MB)、SRAM有限(約256KB)的MCU上被無縫集成和執(zhí)行。

模型部署

與Simplicity SDK集成:使用芯科科技的Simplicity SDK將TF Lite Micro與MCU集成。

閃存模型(Flashing the Model):將轉(zhuǎn)換后的模型移植到MCU的Flash上。這可以使用Simplicity Studio完成,它為芯科科技MCU的編程提供了一個用戶友好的界面。

推理和優(yōu)化:應(yīng)用量化和剪枝等優(yōu)化技術(shù),以減小模型大小并提高性能。

運行推理:一旦模型部署完成,它可以在MCU上運行推理。這包括向模型中輸入新數(shù)據(jù)并獲得預(yù)測結(jié)果。

軟件工具鏈:新的軟件工具包旨在支持開發(fā)人員使用一些最流行的工具套件(如TinyML和TensorFlow)快速構(gòu)建和部署人工智能和機器學(xué)習(xí)算法。AI/ML軟件幫助設(shè)計人員創(chuàng)建新的應(yīng)用程序。除了原生支持TensorFlow來為高效推理提供優(yōu)化內(nèi)核之外,芯科科技還與一些領(lǐng)先的AI/ML工具提供商(如SensiML和Edge Impulse)合作,以確保開發(fā)人員擁有端到端的工具鏈來簡化機器學(xué)習(xí)模型的開發(fā),這些模型針對無線應(yīng)用的嵌入式部署進行了優(yōu)化。通過將這一全新的AI/ML工具鏈與芯科科技的Simplicity Studio開發(fā)平臺以及xG24、xG28和xG26系列SoC結(jié)合使用,開發(fā)人員可以創(chuàng)建能夠從各種互聯(lián)設(shè)備獲取信息的應(yīng)用,這些設(shè)備都可以相互通信,從而做出智能的、由機器學(xué)習(xí)驅(qū)動的決策。

芯科科技提供各種工具和資源來支持ML應(yīng)用。以下是其中一些例子:

機器學(xué)習(xí)應(yīng)用:芯科科技提供集成化的硬件、軟件和開發(fā)工具,幫助客戶快速創(chuàng)建適用于工業(yè)和商業(yè)應(yīng)用場景的、安全的智能設(shè)備。開發(fā)平臺支持嵌入式機器學(xué)習(xí)(TinyML)模型推理,由Tensorflow Lite for Microcontrollers(TFLM)框架支持。該存儲庫包含一組利用ML的嵌入式應(yīng)用程序:https://github.com/SiliconLabs/machine_learning_applications

機器學(xué)習(xí)工具包(MLTK):這是一個帶有命令行實用程序和腳本的Python軟件包,可支持基于芯科科技的嵌入式平臺開發(fā)的機器學(xué)習(xí)模型。它包括從命令行界面或Python腳本執(zhí)行ML操作的各項功能,并可確定ML模型在嵌入式平臺上的執(zhí)行效率,以及使用谷歌Tensorflow訓(xùn)練ML模型。

參考數(shù)據(jù)集:MLTK附帶參考模型使用的數(shù)據(jù)集。這些數(shù)據(jù)集可以在Github上找到:

https://github.com/SiliconLabs/mltk/blob/master/docs/python_api/datasets/index.md

音頻特征生成器(Audio Feature Generator):芯科科技提供了與TensorFlow Lite模型一起使用的音頻特征生成器。它根據(jù)sl_ml_audio_feature_generation_config.h中的配置去進行前端的初始化來生成功能,并以流模式來初始化和啟動麥克風(fēng)。https://docs.silabs.com/machine-learning/latest/machine-learning-tensorflow-lite-api/ml-audio-feature-generation

MLPerf Tiny Benchmark:MLPerf Tiny Benchmark是由一家開放工程聯(lián)盟MLCommons設(shè)計的性能評估套件。它旨在衡量ML系統(tǒng)在推理方面的性能和能效,將訓(xùn)練好的ML模型應(yīng)用于新數(shù)據(jù)。該基準(zhǔn)是專門為低功耗的最小設(shè)備量身定制的,通常用于深度嵌入式應(yīng)用,如物聯(lián)網(wǎng)(IoT)或智能傳感。

芯科科技參與了MLPerf Tiny基準(zhǔn)測試,提交了展示機器學(xué)習(xí)工具包(MLTK)功能的解決方案。該工具包包括TinyML基準(zhǔn)測試使用的幾個模型,可在GitHub上獲得,涵蓋異常檢測、圖像分類、關(guān)鍵字識別和視覺喚醒詞等應(yīng)用程序。

與以前的版本相比,使用MLPerf Tiny v1.0的結(jié)果顯示出了推理速度提高,以及代碼規(guī)模和內(nèi)存使用量的減少。例如,Plumerai的推理引擎表現(xiàn)出了顯著的增強,包括支持時間序列神經(jīng)網(wǎng)絡(luò),如基于LSTM的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN),這在運動傳感器、健康傳感器、語音和音頻應(yīng)用中很常見。

AI/ML合作伙伴

芯科科技與業(yè)界領(lǐng)先的供應(yīng)商合作,包括Edge Impulse、SensiML、NeutonAI和Eta Compute等AutoML工具鏈和SaaS云伙伴建立了合作關(guān)系。此外,諸如Sensory和MicroAI等解決方案提供商,以及包括Capgemini和Jabil在內(nèi)的設(shè)計合作伙伴都是該網(wǎng)絡(luò)的一部分。這些聯(lián)盟提供了可簡化綜合解決方案開發(fā)的平臺,使初學(xué)者更容易接觸到邊緣的AI/ML。

TinyML在MCU上的優(yōu)勢:

成本低-MCU價格合理

綠色環(huán)保-能耗低

易于集成-可輕松將MCU集成到現(xiàn)有環(huán)境中

隱私與安全-在本地處理數(shù)據(jù),無需聯(lián)網(wǎng)傳輸

快速原型開發(fā)-快速開發(fā)概念驗證解決方案

自主可靠-微型設(shè)備在任何環(huán)境下都能穩(wěn)定運行

實時處理-將延遲降至最低

嵌入式開發(fā)應(yīng)用流程

開發(fā)具有機器學(xué)習(xí)功能的應(yīng)用需要兩個不同的工作流程:

使用Simplicity Studio來創(chuàng)建無線應(yīng)用的嵌入式應(yīng)用開發(fā)工作流程。

創(chuàng)建將添加到嵌入式應(yīng)用的機器學(xué)習(xí)功能的機器學(xué)習(xí)工作流程。

目標(biāo)應(yīng)用

運動檢測:在商業(yè)辦公大樓里,許多燈都是由運動探測器控制的,該探測器監(jiān)測占用情況,以確定燈是否應(yīng)該打開或關(guān)閉。然而,當(dāng)員工在辦公桌前打字時,由于動作僅限于手和手指,因為運動傳感器本身無法識別他們的存在,所以可能會出現(xiàn)自動關(guān)燈而無法為員工可提供照明。通過將音頻傳感器與運動探測器連接起來,額外的音頻數(shù)據(jù)(如打字的聲音)可以通過機器學(xué)習(xí)算法進行處理,從而使照明系統(tǒng)能夠更明智地決定燈是應(yīng)該打開還是關(guān)閉。

預(yù)測性維護:可使用芯科科技的EFR32 MCU來開發(fā)一個預(yù)測性維護系統(tǒng)。這需要使用連接的傳感器來收集機器的振動和溫度數(shù)據(jù),同時訓(xùn)練一個模型來根據(jù)這些數(shù)據(jù)預(yù)測潛在的故障,然后將該模型部署在MCU上,實現(xiàn)對機器的實時監(jiān)控和維護計劃。

健康監(jiān)測:使用EFM32 MCU構(gòu)建可穿戴健康監(jiān)測設(shè)備。使用傳感器收集心率和體溫等生命體征的數(shù)據(jù)。訓(xùn)練一個模型來檢測數(shù)據(jù)中的異常。在MCU上部署該模型,幫助用戶對健康情況提供實時分析了解。

智能農(nóng)業(yè):使用芯科科技的MCU開發(fā)智能灌溉系統(tǒng)。使用連接的傳感器收集土壤濕度和天氣數(shù)據(jù)。訓(xùn)練一個模型,以便根據(jù)這些數(shù)據(jù)來優(yōu)化水的使用。將該模型部署在MCU上,控制灌溉系統(tǒng),提高作物產(chǎn)量。

結(jié)論

MCU不再局限于簡單任務(wù),而是正成為實現(xiàn)AI的強大平臺。通過探索面向AI優(yōu)化的MCU,我們可以為電池供電的智能設(shè)備開辟新的潛在應(yīng)用。無論是智能家居設(shè)備還是工業(yè)傳感器,AI驅(qū)動的MCU正在重塑嵌入式系統(tǒng)的未來。

版權(quán)所有 工控網(wǎng) Copyright?2025 Gkong.com, All Rights Reserved
老司机午夜精品视频资源| 999国内精品永久免费视频| 综合成人亚洲偷自拍色| ASSPICS亚洲美女裸体CHINESE| А√天堂资源8在线官网地址| 成人午夜精品久久久久久久| 国产成人无码A区在线观看视频A | 东北小伙二十厘米粗大硬| 国产精彩乱子真实视频| 国精产品一区一区三区| 久久国产乱子伦免费精品无码| 老太性开放BBWBBWBBW| 欧美ZC0O人与善交| 日本老妇XXXXX免费| 舔吮着她的乳尖小说| 亚洲AV日韩AV高潮潮喷无码| 亚洲日本一线产区和二线产| 中文字幕日本六区小电影 | 国产综合久久亚洲综合| 久久不见久久见免费影院3| 毛茸茸的中国女BBW| 青青草原精品国产亚洲AV| 色翁荡息又大又硬又粗视频| 午夜性色一区二区三区不卡视频| 亚洲精品无码久久| 中国少妇的BBWWBBWW| А√天堂8资源最新版| 国产SUV精二区九色| 果冻传媒亚洲区二期| 久久夜色精品国产亚洲| 欧美性猛交一区二区三区精品| 色偷偷色噜噜狠狠网站久久| 小12国产萝裸体视频福利| 亚洲人成人网站色www小说| 18禁亲胸揉胸膜下刺激免费网站| 插我一区二区在线观看| 国产精品一区二区久久| 久久66热人妻偷产精品9| 免费观看电视剧全集在线播放| 人妻熟女AⅤ中文字幕在线看| 天天拍天天看天天做| 亚洲成AV人片在线观看WW| 制服丝袜长腿无码专区第一页| 巴西FREE性VIDEO极品| 国产精品久久久久电影院| 精品香蕉一区二区三区| 男生把手放进我内裤揉摸好爽| 日韩精品无码中文字幕一区二区| 小BBW小BBW小BBW小| 亚洲午夜无码久久| AV无码AV在线A∨天堂毛片| 丰满少妇被猛烈进入高清播放| 韩国电影办公室6免费完整版| 久久亚洲精品无码观看| 人妻 中文 无码 JAVHD| 无码国产成人久久| 亚洲日韩国产一区二区三区在线| 91精品人妻一区二区三区| 干了快生了的孕妇| 极品国产主播粉嫩在线观看| 奶头好大揉着好爽视频午夜院| 色天使综合婷婷国产日韩AV| 亚洲VA中文字幕无码毛片| 自偷自拍亚洲综合精品麻豆| 放荡娇妻张开腿任人玩H| 黑人勃起太大进不去| 免费看高清毛片AAAAAAAA| 色欲色AV免费观看| 亚洲乱码尤物193YW| AV无码一区二区大桥未久| 国产成人无码精品一区在线观看 | 中文WWW新版资源在线| 催眠~凌~辱~学园 在线观看| 护士被医生办公室狂玩| 男女无遮挡XX00动态图120| 他用嘴巴含着我奶头吸怎么办| 亚洲少妇XXXXX| А√最新版资源在线官网| 国产无遮挡又黄又爽高潮| 免费观看人成影片| 熟妇人妻AV无码一区二区三区| 亚洲国产综合无码一区| GOGO人体GOGO西西大尺度| 国产精品无码永久免费888| 久久亚洲精品综合国产仙踪林| 日本午夜精品理论片A级APP发| 亚洲AV无码乱码国产精品老妇| 1313午夜精品理论片| 国产成人亚洲综合无码AⅤ| 久久久噜噜噜久久中文福利| 日本久久久WWW成人免费毛片丨| 亚洲AV自慰白浆喷水少妇| 97久章草在线视频播放| 国产精品无码V在线观看| 老子影院午夜精品无码| 上司人妻互换HD无码| 亚洲伊人久久综合| 成人精品一区二区www| 妓女妓女影院妓女影库妓女网| 欧美体内SHE精视频| 性做久久久久久免费观看| 中文字幕人成乱码中国| 国产成人片AⅤ在线观看| 久久综合色一综合色88| 少妇久久久久久人妻无码| 亚洲综合日韩久久成人AV| 吃了继兄开的药我做的梦更| 精品一区二区三区在线视频| 日本工口里番H全彩无遮挡| 亚洲国产日韩欧美高清片| 锕锕锕锕锕锕~好湿WWW| 黑人与中国娇小美女AV在线| 欧美人妖XXXX做受| 亚洲 暴爽 AV人人爽日日碰| 97超碰中文字幕久久精品| 国产精选午睡沙发系列999| 男女18禁啪啪无遮挡激烈网站| 无码人妻精品一区二区三 | 国产亚洲一区二区手机在线观看| 内射中出无码护士在线| 吸头AXYGEN日本| 97久久综合亚洲色HEZYO| 国产一国产二国产三国产四国产五| 欧美成人v片一区二区三区激情| 性欧美18-19SEX性高清播 | 国产午夜男女爽爽爽爽爽| 欧美精品双插重口在线播放| 亚洲AV无码一区二区三区网站| JAPANESE精品中国少妇| 精品成在人线AV无码免费看| 日本三级强乳伦姧| 亚洲中文无码A∨在线观看| 国产9 9在线 | 中文| 邻居少妇张开腿让我爽了一夜视频| 铜铜铜铜铜铜铜好-深色| 42岁女子20天断崖式衰老| 国产午夜激无码AV毛片不| 欧美性猛交XXX嘿人猛交| 亚洲鲁丝片一区二区三区| 东京热人妻无码人AV| 噜噜噜亚洲色成人网站| 无码人妻丝袜视频在线播免费| 97人妻成人免费视频| 好大好爽舔我高潮了| 日本熟妇色XXXXX日本免费看 | 蜜臀AV网站在线观看| 性色AⅤ一二三天美传媒| VIDEOSSEX变态狂另类| 精品一区二区三区| 太太其实你也很想要的对吧| 中文字幕一线产区和二线区的区别| 国产午夜精品久久久久免费视| 人妻人人做人做人人爱| 亚洲一卡2卡3卡4卡5卡6卡| 国产黑色丝袜在线视频| 欧美交换配乱吟粗大和黄| 亚洲精品无码成人区久久| 疯狂做受XXXX高潮视频免费| 免费看高清大片的APP在线看| 亚洲AV无码成人精品区在线播放| 成年轻人电影免费 视频| 看全色黄大色大片免费久久| 性色AV无码久久一区二区三区| 锕锕锕锕锕锕锕好疼免费看网站| 久久精品中文字幕无码| 无码国产色欲XXXX视频| CHINESE熟女老女人HD视| 精品一区二区成人精品| 窝窝人体色WWW聚色窝魅惑| MM1313亚洲精品无码又大又| 久久九九国产精品怡红院| 无码日韩人妻AV一区免费| YY6080久久亚洲精品| 久久久无码精品亚洲日韩按摩| 无码专区国产精品视频| 八戒网站免费观看视频| 久久人人爽人人爽人人片AVY| 小蜜被两老头吸奶头| 成人AV在线网站| 蜜桃AV麻豆AV天美AV| 亚洲爆乳大丰满无码专区| 高潮大叫喷水发抖抽搐| 欧美白人最猛性XXXXX69交| 亚洲日韩一区二区蜜桃AV| 国产精品成人网站| 人人澡人人澡人人看添AV| 在线亚洲人成电影网站色WWW| 国内精品国产三级国产AV| 上边一面亲下边一面膜的作用 | BT天堂资源种子在线| 久久久久久久波多野结衣高潮| 性高朝久久久久久久| 荡公乱妇第1章方情95| 女人和拘做受全过程| 亚洲日韩乱码中文无码蜜桃臀| 国产精品亚洲一区二区无码| 日韩大片高清播放器| 91人妻一区二区三区蜜桃精品| 精品一区二区久久久久久久网站| 午夜免费无码福利视频网址|